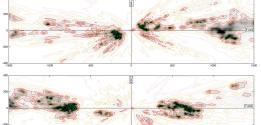
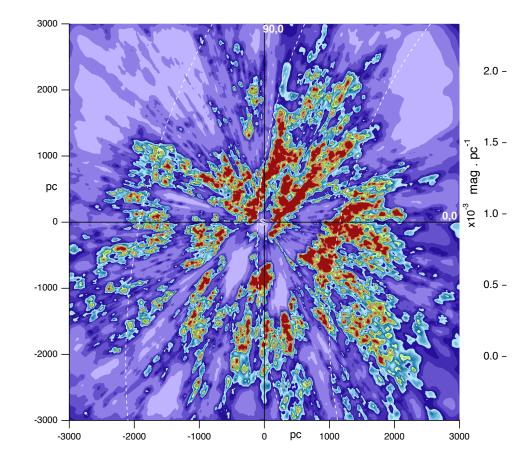
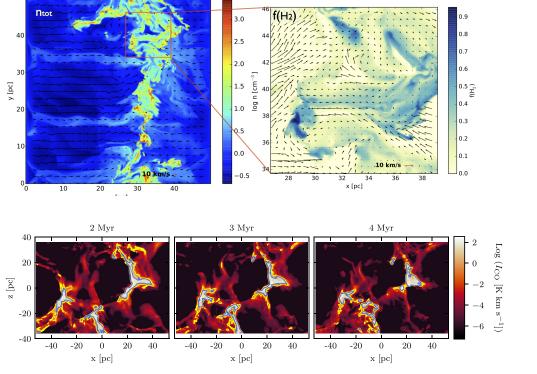

Heterodyne spectroscopy pf the interstellar medium : from millimeter to far infrared wavelengths



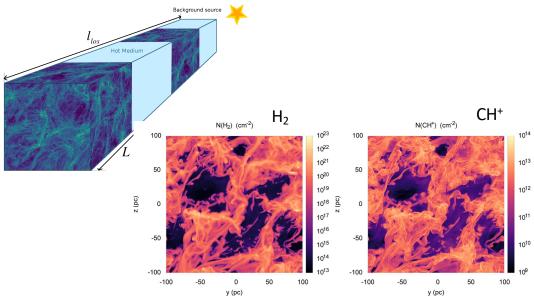
Questions for today and for the future


- How to get an accurate characterization of the gas ?
 - structure : density and column density distribution
 - kinematics : velocity field, turbulence properties, shocks
 - physical parameters : electron fraction, CRIR, UV radiation field, magnetic field
 - composition : elemental abundances, depletions, atomic and molecular abundances
- Accessible through detailed analysis and modeling of atomic and molecular spectral lines including ions
- → Broad spectral coverage
- ➔ Combination of data science and physics-based approaches

Gas and dust structures : inversion of the extinction



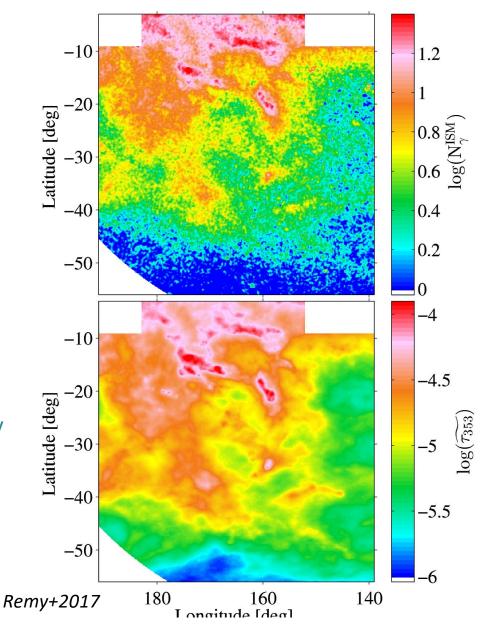
- Large stellar surveys including GAIA
- known clouds are identified
- Dust and gas clouds separated by large low density bubbles with little dust : 3 phase model ?
- Limited spatial resolution
- Less accurate at large distances



Vergely+2022

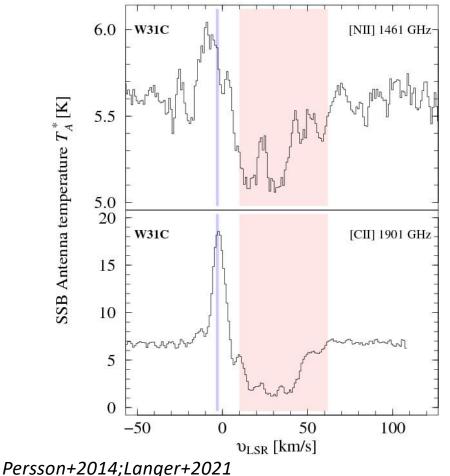
Validivia+2017, Bellomi+2021,Borchert+2022,Godard+2023

Numerical simulations & models



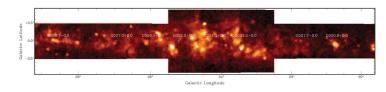
High resolution MHD + heating/cooling + UV radiation propagation + calculation of synthetic observations Chemistry : on the flight (H, H₂, CO ..) and/or post processing

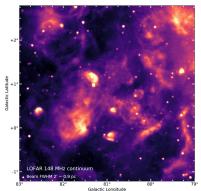
- \rightarrow Good account of the complex structure along the line of sight
- → Simplified physics and chemistry & non steady state effects , important role of the numerical resolution
- \rightarrow Comparisons using various species CO may not be the best case \rightarrow Use C+, O, hydrides ?

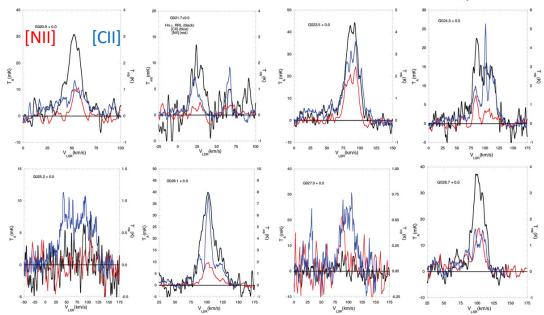

Probing the ISM Phases with observations

- Information on all phases is necessary for the full picture
- Structure, dynamics and relative motions : kinematic information is essential
- Total gas
 - From dust : far IR and submm emission, dust extinction
 - from gamma ray (interaction of cosmic rays with the matter)
 - Full Milky Way maps available as well as nearby galaxies
 - \rightarrow No kinematics
 - →Dust properties change with the environment : uncertainty in the gas/dust ratio

Probing the ISM phases with observations : ionized gas

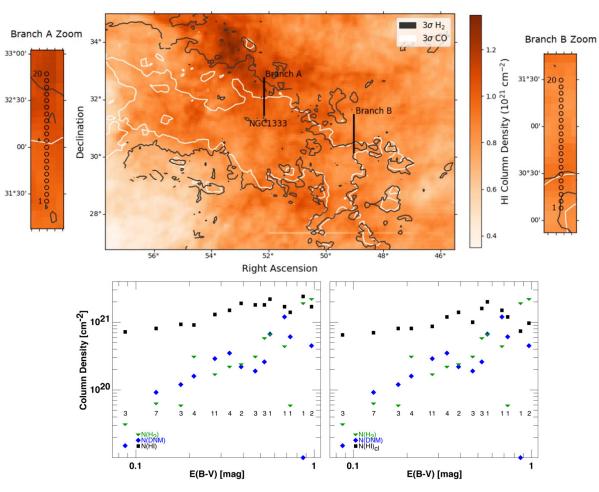

- Diffuse Warm Ionized gas :
 - Hydrogen Recombination lines $\text{H}\alpha$
 - Far infrared fine structure lines including [NII]
- →Absorption along the line of sight consistent with the expected WIM properties (N ~ 1.5 10¹⁷ cm⁻², n ~0.1 0.3 cm⁻³, volume filling factor ~0.3)
- \rightarrow Waiting for the ASTHROS balloon ?




Probing the ISM phases with observations : ion

- Dense and warm lonized gas :
 - Far infrared fine structure lines including [NII] in emission
 - Electron temperature (3500-9000 K)
 - High electron density (10-30 cm⁻³)
 - High thermal pressure (> 10⁴ Kcm⁻³)

→ related to ionized filamentary structures (photo evaporation) ?

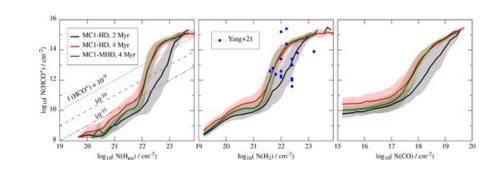


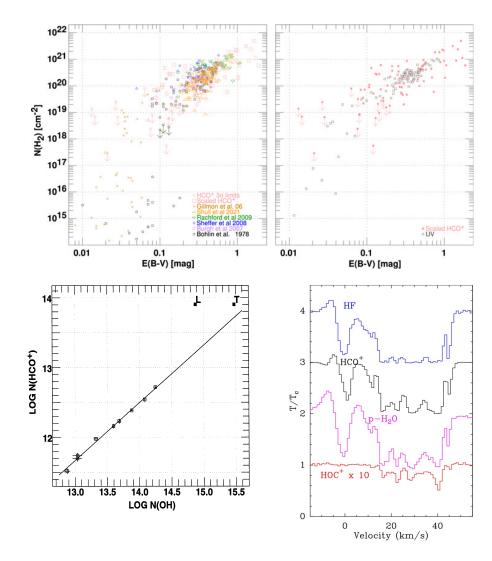
Langer+2021,Emig+2023

Probing the ISM Phases with observations : atomic H

- Neutral Atomic gas
 - from HI emission and absorption surveys
 - Correction for optical depth
 - Separation of cold (absorption) and warm (broad emission lines) HI
 - HI dominates in the cloud "envelope" but does not trace the dense structures
 - Association with [CII] absorption & emission for the "cold" HI

Hall+2020; Liszt+2023

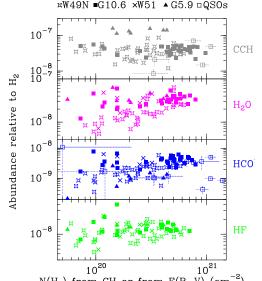

Probing the ISM phases from observations : molecular gas


• Hydrides as proxy for H₂ : HF, CH , OH

Challenge for chemical models

•

- HCO⁺ absorption can be used as a proxy for H₂ ([HCO⁺/H₂] = 3x10⁻⁹ within less than a factor of 2)
- Calibration with hydrides (CH, HF, OH and H₂O)
- Same threshold for HCO⁺ or H₂ detection and same variation with E(B-V)
- Very weak emission → low to moderate densities
 : 100 500 cm⁻³



Lucas & Liszt 1996, Liszt+2023, Gerin+2019, Panessa+2023

Measuring diffuse & translucent molecular gas

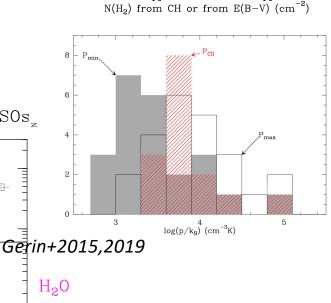
Molecule	Abundance	Uncertainty dex	Comment	$N(\mathrm{H}_2)/\int \tau \mathrm{d}u$ cm ⁻² /km s ⁻¹
HCO ⁺	3.1×10^{-9}	0.21	Using [CH] = 3.6×10^{-8} and E(B-V) ^{<i>e</i>}	4.0×10^{20}
HOC^+	4.6×10^{-11}	0.21	From [HOC ⁺]/[HCO ⁺]	5.2×10^{22}
CF^+	1.7×10^{-10}	0.30	From [CF ⁺]/[HCO ⁺]	9.0×10^{22}
C_3H^+	7.5×10^{-11}	0.30	From $[C_3H^+]/[HCO^+]$	2.0×10^{23}
HF	1.2×10^{-8}	0.14	Using [CH] = 3.6×10^{-8e}	2.0×10^{20}
H_2O^a	2.7×10^{-8}	0.20	Using [CH] = 3.6×10^{-8e}	3.4×10^{20}
ССН	4.4×10^{-8}	0.15	Using [CH] = 3.6×10^{-8e}	1.5×10^{21}
CH^b	3.6×10^{-8}	0.21	Sheffer et al. (2008)	1.0×10^{21}
CH^{c}	3.6×10^{-8}	0.21	Sheffer et al. (2008)	9.7×10^{20}
OH^d	1.0×10^{-7}	0.1	Weselak et al. (2010)	2.5×10^{20}

- Range of tracers with different sensitivities
- Hydrides lines in the far infrared are the most sensitive and have a relatively well understood chewishryG10.6 ×W51 ▲ G5.9 □QSOs₂

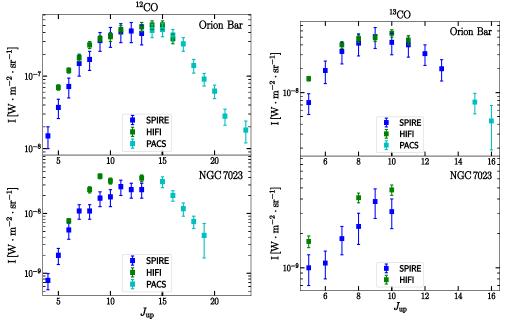
10 10

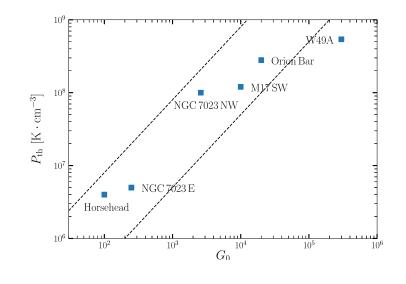
10⁻⁸

-8


• Transition to translucent and molecular gas : CO isotopologues

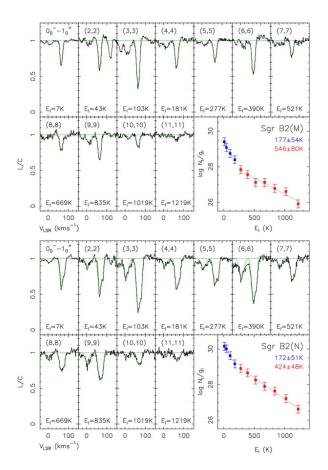
 H_{2}

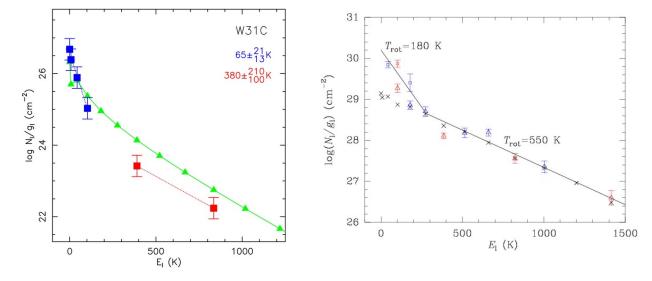

to


relative

• Specific submm/far infrared lines : [C] (gas pressure); **

Molecular gas excitation : the CO ladder

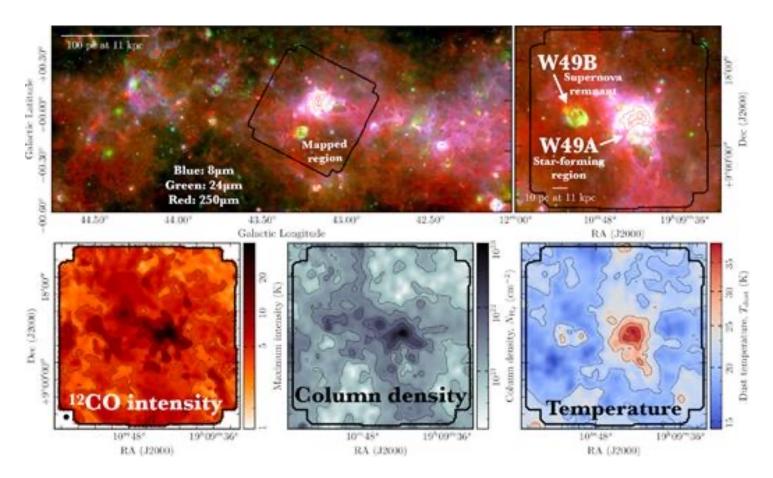




- Dense PDRs : Orion Bar and NGC 7023. Detection of CO emission up to J =18 !
- \rightarrow Good characterization of the dense gas pressure
- \rightarrow Relation between Pth and G0 : feedback
- Implication for CO emission in active and high z galaxies : small regions can contribute a large fraction of the flux

Joblin+2018

Molecular gas excitation : metastable H_3O^+ levels

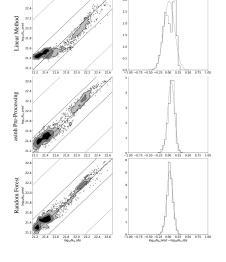

Excitation consistent with formation pumping

→Abundance and level population depend on the cosmic ray ionization rate

→ Same phenomenon in active compact galaxies like Arp220, up to high redshifts

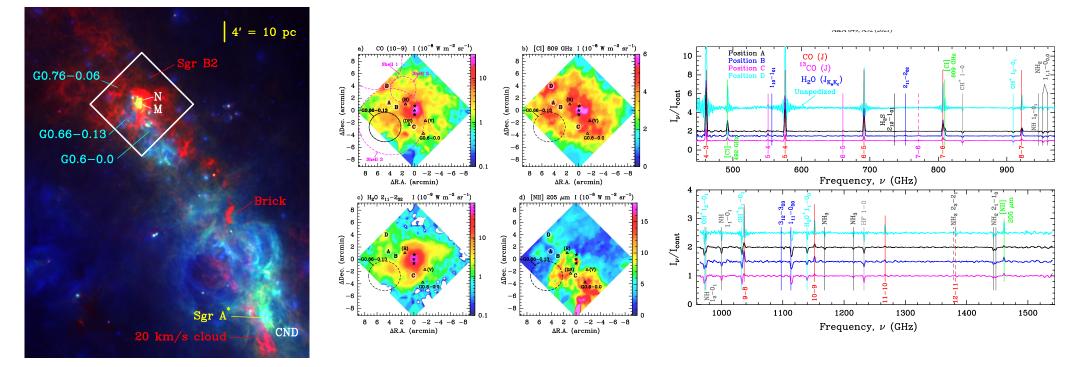
Lis+2014, Gonzalez-Alfonso+ 2013

The benefit of large scale maps


Separation of the material associated to the distant star forming region W49N and the gas along the line of sight

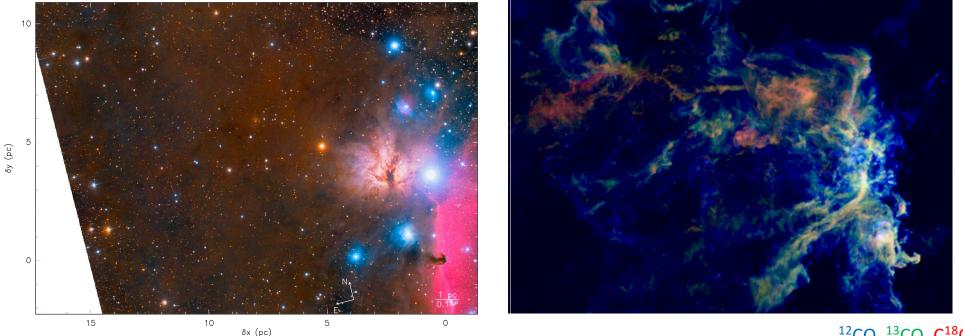
LEGO, W49N Barnes+2020

The benefit of large scale maps


Orion B Herschel vs IRAM-30m

Gratier+2021

- Large dynamical range of spatial scales
- Large variety of environments
- Relation between star forming regions and their environment
- Spectral line maps are smaller than photometry but bring complementary information


The benefic of large scale maps

- SgrB2 : an example for molecular cloud associated to super star cluster, as in starbursts
- Combination of spectral diagnostics for the different phases

SgrB2, Santa-Maria+2021

Focusing on a nearby molecular cloud

¹²CO, ¹³CO, C¹⁸O Tpeak

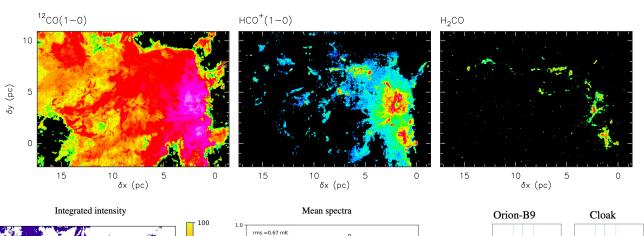
IRAM-30M Large program. PI : M. GERIN & J. PETY.

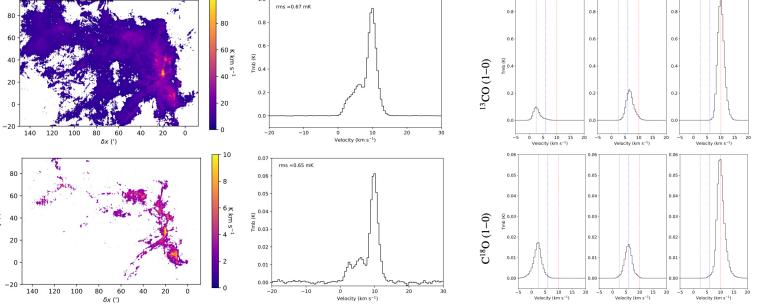
With I. BESLIC, L. EINIG, M. GAUDEL, H. MAZUREK, J. ORKISZ, P. PALUD, M. SANTA MARIA, L. SEGAL, V. de SOUZA MAGALHAES, M. VONO, A. ZAKARDJAN, S. BARDEAU, S. BOURGUIGNON, E. BRON, P. CHAINAIS, J. CHANUSSOT, J. GOICOECHEA, P. GRATIER, V. GUZMAN, A. HUGHES, D. LANGUIGNON, J. LE BOURLOT, F. LE PETIT, F. LEVRIER, H. LISZT, K. OBERG, N. PERETTO, A. ROUEFF, E. ROUEFF, A. SIEVERS, and P. TREMBLIN

Gas kinematics & Filaments

¹²CO emission over most of the field of view

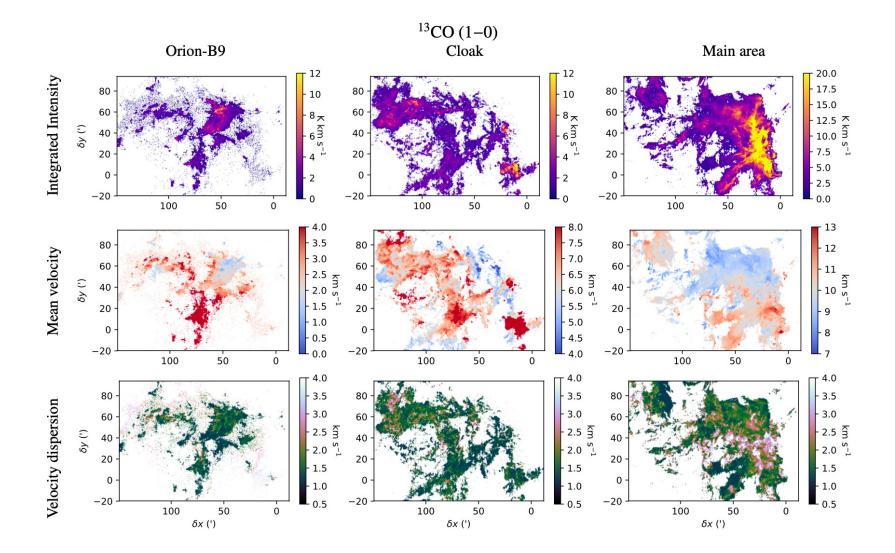
C¹⁸O emission spatially and spectrally concentrated


HCO⁺ and HCN show extended emission from the cloud envelope

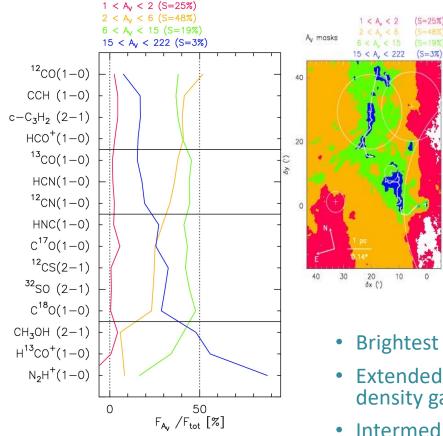

Complex spatial and velocity structure denoising and separation of velocity « layers » using ROHSA (Marshal+2020) ¹³CO (1-0)

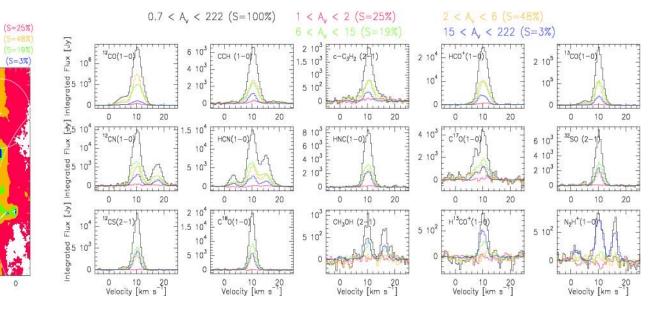
C¹⁸O (1-0)

δy (')


All velocity components associated with Orion B and at the same distance. Consistent with YSO velocities in Orion B

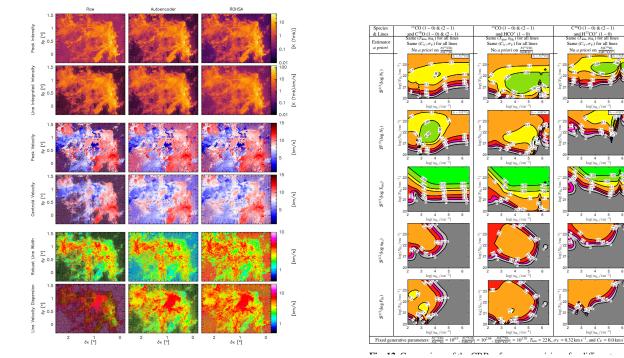
Gaudel+2023; Santa Maria 2023, Pety+2024 in prep


Main area


Gaudel+2023

•

Tracing different Av / density regimes



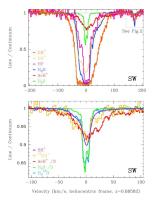
- Brightest region including NGC 2024 and NGC 2023
- Extended emission in HCO^{+ &} HCN : subthermal excitation in moderate density gas (~10³ cm⁻³)
- Intermediate density & filamentary gas : C¹⁸O, HNC
- Dense and well shielded gas $(n > 10^4 \text{ cm}^{-3}) : N_2\text{H}^+$; H¹³CO⁺, CH₃OH

Advanced data analysis & interpretation

	Method		Error factor			Memory	Speed
		mean	99th per.	max	(MB)	(ms)	
	near. neighbor linear		×13.1	×11.3	×3e5	1650	62
oval			15.7	×2.3	×143	1650	1.5e3
	spline	linear	15.7	×2.3	×144	1650	
emo		cubic	11.2	×2.2	×122	1650	
No outlier removal		quintic	19.1	×2.9	×304	1650	
	RBF	linear	10.2	96.8	×99	1650	1.1e4
		cubic	10.4	×2.1	×112	1650	1.1e4
		quintic	10.9	×2.1	×118	1650	1.1e4
	Z	R	7.3	64.8	×81	118	12
	ANN	R+P	6.2	49.7	$\times 84$	118	13
	near. neighbor linear		×13.1	×11.6	×3e5	1650	62
t ct			15.9	×2.4	×143	1650	1.5e3
S S		linear	15.9	×2.4	×144	1650	
inir	spline	cubic	11.1	×2.2	$\times 120$	1650	
tra	st	quintic	20.0	×2.7	$\times 285$	1650	
Dutlier removal on training set	Г т	linear	10.3	97.3	×97.5	1650	1.1e4
	RBF	cubic	10.5	×2.0	$\times 106$	1650	1.1e4
	щ	quintic	10.9	×2.0	×114	1650	1.1e4
erre	7	R	5.1	42.0	×32.8	118	12
utli		R+P	5.5	42.3	×41	118	13
õ	ANN	R+P+C	4.9	44.5	×44	51	14
	≺ R+P+D		4.5	33.1	×33.8	125	11
		R+P+C+D	4.8	37.9	×37.6	43	14

- Large data volumes : automated analysis, statistical diagnostics
- Limited integraion time : denoising spectral line maps : optimum use of the data
- Precision, bias and degeneracies of the radiative transfer models : statistical tools
- Emulation of model for fast calculations and Bayesian fitting
- ightarrow Collaboration with data scientists is essential

What's next ? Mapping the ISM : Galactic plane surveys


- From the ground : mapping surveys beyond CO lines for
 - Better coverage of the physical conditions
 - Kinematic information
 - Chemical information & associated physical diagnostics

\rightarrow Array receivers for large single dish telescopes like IRAM-30m

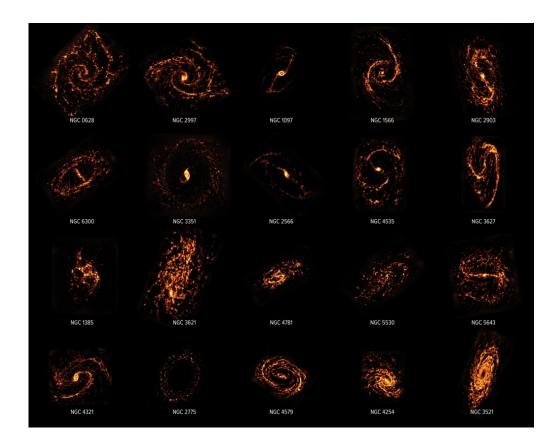
- From space : mapping surveys of FIR fine structure lines ([CII], [NII], [OI], ..) with high spectral resolution
 - From the very low density phases to diffuse molecular gas
 - Feedback phenomena including large scale winds and outflows
 - Tomography of the MW together with extinction data
 - Energy flows from cooling power (need some FIR CO & H_2O lines)
- From space : dust emission polarimetry
- \rightarrow Context for extragalactic data up to high redshift

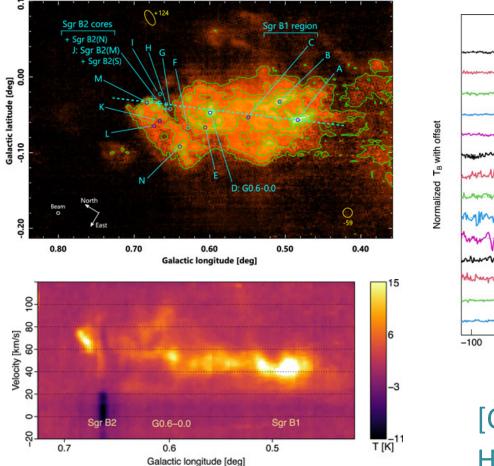
Müller+2021

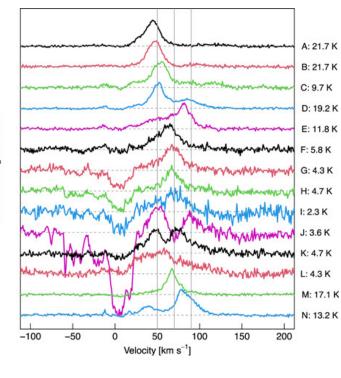
Müller+2017

What's next ? Star and planet forming material

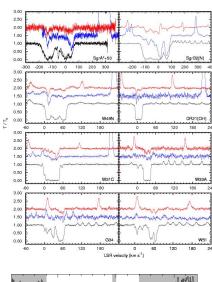
- Far infrared spectroscopy of planet forming disks : HD, H₂O, OI, as in the FIR probe projects
 - Total gas content, depletions, position of the snow line, tomography from the line profiles, evolutionary effects
 - High spectral resolution is key for line profile and line/continuum separation
- IR imaging spectroscopy with JWST
- Ground based interferometers NOEMA, ALMA Wide Sensitivity Upgrade (2030+) with 2x (8 – 16 GHz) at high spectral resolution, ngVLA, MeerKat

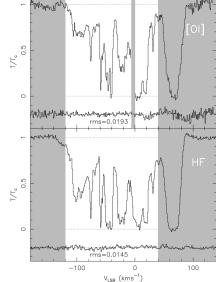



In nearby galaxies



PHANGS : ALMA+VLT




Complexity of line profiles

[CII] with SOFIA Herschel

SgrB2, Harris+2021, Godard+2012, Lis+2014, Lis+2023