HyGAL and a series of other *GREAT* hydride observations

Arshia Maria Jacob

Johns Hopkins University, Max Plank Institute for Radio Astronomy ajacob51@jhu.edu, ajacob@mpifr-bonn.mpg.de

SOFIA – Scientific Highlights and Future Perspectives April 22nd – 26th, 2024

Background Image: ¹³CH spectrum (Jacob+20) overlaid atop a composite infrared image of the Sgr B complex. Credits: NASA/SOFIA/JPL-Caltech/ESA/Herschel

The molecular Universe

The formation of interstellar atoms and molecules in the Universe \rightarrow

is a dramatic example of the emergence of *complexity*

→ A rich chemistry operates particularly in the cooler regions of the interstellar medium (ISM).

Schematic diagram of the history of the Universe.

Astro*chemistry*

Today -- over 290* molecules and molecular ions have been detected in the ISM

Careful interpretation of these interstellar molecules provides unique information of general astrophysical interest achieved using the combination of

Observations of astrophysical molecules

Emission line luminosities

Absorption line optical depths

Laboratory astrophysics and related theory

Spectroscopy, Collisional excitation rate coefficients, Reaction rate coefficients,

Photoionization and photodissociation crosssections, ... Astrophysical Modelling

Fullerene

 C_{60}

Physical and chemical conditions

H₂O

Excitation and radiative

transfer

Astro*chemistry*

Small molecules have the greatest promise of extending our understanding of the ISM \rightarrow

- Relatively well understood chemical pathways and
- Well-measured spectroscopic parameters
- Large abundances and are the building blocks for more complex species
 Particularly light hydrides!!

Hydrides

XH_n , XH_n^+ : Reservoir for heavy elements

Fundamental building blocks of interstellar chemistry

Taken from Jacob 2023b.

Taken from McGuire et. al 2020.

Renewed interests in Hydrides

- Since they are small molecules \rightarrow widely spaced energy levels
 - \rightarrow Fundamental rotational transitions lie at sub-mm and FIR wavelengths
- Advancements in (heterodyne) receiver technology

Renewed interests in Hydrides

Several hydride discoveries For example: H₂Cl⁺ Lis et al. 2010 H₂O⁺ Ossenkopf et al. 2010 OH⁺ Wyrowski et al. 2010 SH⁺ Menten et al. 2011 HCl⁺ De Luca et al. 2012 ArH⁺ Barlow et al. 2013, Schilke et al. 2014

Detailed modeling of absorption line spectra (e.g., PRISMAS, WISH, HEXOS) have led to the establishment of specific hydrides as diagnostic probes of different phases and processes in the ISM.

Absorption line spectroscopy

Galactic Tomography!

Absorption line spectroscopy

Galactic Tomography!

SOFIA/GREAT observations

German Receiver for Astronomy at Terahertz frequencies

High resolution, heterodyne instrument
→ Can observe hydride transitions in every channel!

Channels	Frequency Range [THz]	T _{rec} Double Sideband FWHM		Astronomical Lines of Interest		
upGREAT HFA	4.7447 +/- 100 km/s	1250 K	6"	[OI]		
upGREAT LFA-H	1.835-2.007	1000 K	15"	[CII], CO, OH ² π _{1/2}		
upGREAT LFA-V	1.835–2.007 2.060–2.065	1000 K	15"	[OI], [CII], CO, OH ² π _{1/2}		
	2.490-2.590	3300 K	12"	OH ² π _{3/2} , ¹⁸ OH ² π _{3/2}		
	1.240–1.395 1.427–1.525	1100 K	19"	[NII], CO, OD, HCN, SH, H_2D^+		
4GREAT	0.890-0.984 0.990-1.092	>600 K 300 K	25"	CO, CS		
	0.491-0.555 0.560-0.635	<150 K	50"	NH ₃ , [CI], CO, CH		

Pineau des Forets et al. (1986)

HeH⁺ at 2.01 THz (Güsten et al. 2019)

Discovery of the first molecule formed in space! Constraints on chemistry in the Early Universe

CH has a tight correlations with $H_2 \rightarrow important molecular gas tracer$

Sheffer et al. 2008 ($[CH]/[H_2] = 3.5 \times 10^{-8}$)

Primary product of nucleosynthesis Formed from the first stars

> Secondary product of nucleosynthesis Formed from enriched stars as a byproduct of the CNO cycle

See Wonju Kim's talk

HyGAL – "Hydrides in the GALaxy"

Characterize the diffuse Galactic ISM with observations of hydrides and other small molecules

PIs: D. Neufeld (JHU), P. Schilke (UzK)

W.-J. Kim, A. Sternberg, B. Godard, D. Lis, D. Elia, M.
Gerin, M. Wolfire, N. Indriolo, H. Wiesemeyer, V.
Ossenkopf-Okada, S.Bialy, D. Seifried, P. Sonnetrucker,
V. Valdivia, S. Walch, F. Wyrowski, K. M. Menten, M.
Busch, M. R. Rugel, A. Sanchez-Monge, R. Higgins, E.
Falgarone, P. Hennebelle, S. Molinari, A. M. Jacob

HyGAL – "Hydrides in the GALaxy"

Characterize the diffuse Galactic ISM with observations of hydrides and other small molecules

PIs: D. Neufeld (JHU), P. Schilke (UzK)

W.-J. Kim, A. Sternberg, B. Godard, D. Lis, D. Elia, M.
Gerin, M. Wolfire, N. Indriolo, H. Wiesemeyer, V.
Ossenkopf-Okada, S.Bialy, D. Seifried, P. Sonnetrucker,
V. Valdivia, S. Walch, F. Wyrowski, K. M. Menten, M.
Busch, M. R. Rugel, A. Sanchez-Monge, R. Higgins, E.
Falgarone, P. Hennebelle, S. Molinari, A. M. Jacob

GOAL:

To understand how molecular clouds are formed and the processes that lead to the transition from atomic to molecular gas

Goals

To understand how molecular clouds are formed and the processes that lead to the transition from **atomic to molecular gas**

- Six key hydrides: ArH⁺, H₂O⁺ OH⁺, SH, CH and OH
- Two atomic gas constituents: C⁺, O

High resolution spectroscopic observations using upGREAT and 4GREAT

With three tunings to disentangle any sideband contamination

German Receiver for Astronomy at Terahertz frequencies (GREAT)

- Six key hydrides: ArH⁺, H_2O^+ OH⁺, SH, CH and OH
- Two atomic gas constituents: C+, O

High resolution spectroscopic observations using upGREAT and 4GREAT

With three tunings to disentangle any

Atmospheric transmission at 38,000 feet with the HyGAL observing setups marked and labelled. Plot created using ATRAN (Lord et al. 1992) online tool https://atran.arc.nasa.gov/cgi-bin/atran/atran.cgi.

- Six key hydrides: ArH⁺, H₂O⁺ OH⁺, SH, CH and OH
- Two atomic gas constituents: C+, O

25 bright background continuum sources (5 of which are in the Outer Galaxy)

<u>Source selection:</u> 160 μm continuum flux > 2000 Jy (Inner Galaxy) > 1000 Jy (Outer Galaxy) From the Hi-GAL source catalogue (Elia et al. 2021)

82% of the proposed data observed!

High resolution spectroscopic observations using upGREAT and 4GREAT

With three tunings to disentangle any sideband contamination

#	Source	Right Ascension	Declination	Gal. Long.	Gal. Lat.	$v_{\rm LSR}$	d [Ref]
	Designation	[hh:mm:ss]	[dd:mm:ss]	[deg]	[deg]	$[\mathrm{km} \mathrm{~s}^{-1}]$	[kpc]
a	${ m HGAL284.015-00.86}$	10:20:16.1	-58:03:55.0	284.016	-0.857	9.0	5.7 [1]
b	HGAL285.26 - 00.05	10:31:29.5	-58:02:19.5	285.263	-0.051	3.4	4.3 [2]
с	G291.579 - 00.431	11:15:05.7	-61:09:40.8	291.579	-0.431	13.6	8.0 [3]
\mathbf{d}	IRAS 12326-6245	12:35:35.9	-63:02:29.0	301.138	-0.225	-39.3	4.6 [4]
е	G327.3 - 00.60	15:53:05.0	-54:35:24.0	327.304	-0.551	-46.9	3.1 [5]
f	G328.307 + 0.423	15:54:07.2	-53:11:40.0	328.309	+0.429	-93.6	5.8 [6]
g	IRAS $16060 - 5146$	16:09:52.4	-51:54:58.5	330.953	-0.182	-91.2	5.3[7]
\mathbf{h}	IRAS $16164 - 5046$	16:20:11.9	-50:53:17.0	332.827	-0.551	-57.3	3.6 [8]
i	IRAS $16352 - 4721$	16:38:50.6	$-47{:}28{:}04.0$	337.404	-0.403	-41.4	12.3 [4]
j	IRAS 16547-4247	16:58:17.2	-42:52:08.9	343.126	-0.063	-30.6	2.7 [8]
k	NGC 6334 I	17:20:53.4	-35:47:01.5	351.417	+0.645	-7.4	1.3 [9]
1	G357.558 - 00.321	17:40:57.2	-31:10:59.3	357.557	-0.321	5.3	9.0-11.8 [10]
\mathbf{m}	HGAL0.55 - 0.85	17:50:14.5	-28:54:30.7	0.546	-0.851	16.7	7.7 - 9.2 [11]
n	G09.62 + 0.19	18:06:14.9	-20:31:37.0	9.620	+0.194	4.3	5.2 [12]
0	G10.47 + 0.03	18:08:38.4	-19:51:52.0	10.472	+0.026	67.6	8.6 [13]
р	G19.61 - 0.23	18:27:38.0	-11:56:39.5	19.608	-0.234	40.8	12.6 [14]
q	G29.96 - 0.02	18:46:03.7	-02:39:21.2	29.954	-0.016	97.2	4.8 [15]
r	G31.41 + 0.31	18:47:34.1	$-01{:}12{:}49.0$	31.411	+0.307	98.2	3.7 [15]
s	W43 MM1	18:47:47.0	-01:54:28.0	30.817	-0.057	97.8	3.1 [15]
\mathbf{t}	G32.80 + 0.19	18:50:30.6	-00:02:00.0	32.796	+0.191	14.6	9.7 [15]
u	G45.07 + 0.13	19:13:22.0	+10:50:54.0	45.071	+0.133	59.2	7.8 [15]
v	DR21	20:39:01.6	+42:19:37.9	81.681	0.537	-4.0	1.5 [16]
w	NGC 7538 IRS1	23:13:45.3	+61:28:11.7	111.542	0.777	-59.0	2.6 [17]
x	W3 IRS5	02:25:40.5	+62:05:51.	133.715	1.215	-39.0	2.3 [18]
у	W3(OH)	02:27:04.1	+61:52:22.1	133.948	1.064	-48.0	2.0 [18, 19]

High resolution spectroscopic observations using upGREAT and 4GREAT

With three tunings to disentangle any sideband contamination

Goals

To understand how molecular clouds are formed and the processes that lead to the transition from **atomic to molecular gas**

Low-energy cosmic-rays

Importance of CRs in the ISM

- Source of heating and ionization in the ISM
- Produces diffuse $\gamma\text{-ray}$ flux and light elements via spallation
- Drives interstellar chemistry
- Couples with magnetic fields

Taken from McGuire et al. 2021.

Low-energy cosmic-rays

Importance of CRs in the ISM

- Source of heating and ionization in the ISM
- Produces diffuse $\gamma\text{-ray flux}$ and light elements via spallation
- Drives interstellar chemistry
- Couples with magnetic fields

Why study CRs?

 Low energy (< 1 GeV) particle flux is poorly constrained! → Uncertainties in the results from Voyager

Cosmic ray energy distribution spectrum. Taken from Cummings et al. 2016.

CR Ionization rates inferred from observations of the local ISM

Photodissociation region (PDR)

CR Ionization rates inferred from observations of the local ISM

Photodissociation region (PDR)

Atomic gas tracers

HyGAL* data – ArH+, OH+, H_2O^+

(Jacob et al. in prep)

- ArH⁺ detected toward 17 sources (combining data from SOFIA, Herschel and APEX)
- OH+ detected toward 23 sources
- *p*-H₂O⁺ unambiguous detections of absorption in specific velocity intervals toward 15 sources (combining data from SOFIA, Herschel and APEX)

*With the end of SOFIA ~70% of the proposed HyGAL data has been collected

Diffuse cloud models

(Jacob et al. in prep)

(Neufeld & Wolfire 2017)

- Two-sided slab illuminated isotropically by UV radiation field (Draine 1978, Wolfire 2010)
- Main grid parameters X_{UV} , $\zeta_p(H)$, $Av_{(tot)}$

Diffuse cloud models

(Jacob et al. in prep)

Neufeld & Wolfire 2017)

(Jacob et al. in prep)

Revised $\zeta_p(H)$

(Neufeld & Wolfire 2017)

- Two-sided slab illuminated isotropically by UV radiation field (Draine 1978, Wolfire 2010)
- Main grid parameters X_{UV} , $\zeta_p(H)$, $Av_{(tot)}$
- Revised chemical network

$$<\zeta_p(H)/n_{50}> \sim 7 \times 10^{-16} \text{ s}^{-1}$$

(Jacob et al. in prep – preliminary more HyGAL data points soon!)

CR Ionization rates inferred from observations of the local ISM

Photodissociation region (PDR)

The future of hydrides

HyGAL provides:

- a systematic investigation of the properties of diffuse clouds and
- a wealth of knowledge also about the background

sources

Future without SOFIA

- JVLA, MeerKAT, SKA : Back to basics, explore the radio skies with diffuse tracers like CH and OH (See talk by Karl Menten, poster by Michael Busch) Study the properties of CO dark gas
- Balloon Missions (GUSTO)
- NASA FIR Probe (?)

... still bright

