To Bubble or Not to Bubble Stellar Feedback in Orion and 30 Doradus

Cornelia Pabst

Leiden Observatory

April 24, 2024

Cornelia Pabst, Leiden Observatory

To Bubble or Not to Bubble

Aspects of stellar feedback and star formation

- kinematics and energetics of star-forming regions
- heating and cooling of the ISM
- transmittance of turbulence into molecular clouds and the dilute ISM
- tracers of star formation in distant galaxies
- regulation of stellar feedback by magnetic fields

Aspects of stellar feedback and star formation

- kinematics and energetics of star-forming regions
- heating and cooling of the ISM
- transmittance of turbulence into molecular clouds and the dilute ISM
- tracers of star formation in distant galaxies
- regulation of stellar feedback by magnetic fields
- **The Local Truth**: we observe nearby star-forming regions with different characteristics
- but we select bright targets, while large percentage of emission is in faint extended regions

Orion versus the Tarantula

Figure 1: 1 O7V star, less than 1 Myr old

Figure 2: 300 O stars and 17 WR stars, 1-2 Myr old

Disruption of the Orion molecular core 1 by wind from the massive star θ^1 Orionis C

C. Pabst¹, R. Higgins², J. R. Goicoechea³, D. Teyssier⁴, O. Berne⁵, E. Chambers⁶, M. Wolfire⁷, S. T. Suri², R. Guesten⁸, J. Stutzki², U. U. Graf², C. Risacher^{8,9} & A. G. G. M. Tielens¹*

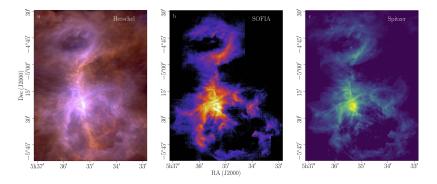


Figure 3: Three infrared images of the Orion Nebula complex (Pabst+2019). a) *Herschel*/PACS and SPIRE dust continuum images (red: SPIRE 250 μ m, green: PACS 160 μ m, blue: PACS 70 μ m). b) Line-integrated [C II] 158 μ m emission, observed by the upGREAT instrument onboard SOFIA. c) *Spitzer*/IRAC 8 μ m image.

Tracing expanding bubbles: The Veil Shell



Figure 4: Excess X-ray emission from the cavity of the Orion Nebula (blue). The green and red channels show the *Spitzer*/IRAC 4.5 μ m and 5.8 μ m emission, respectively (Güdel+2008).

Measuring stellar feedback

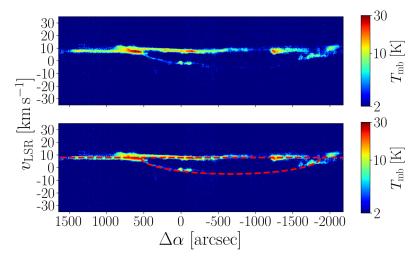


Figure 5: [C II] pv diagram through the Orion Veil shell (Pabst+2019, 2020). The lower panel traces the arc structure for an expansion velocity of $13 \,\mathrm{km \, s^{-1}}$ on a background velocity of $8 \,\mathrm{km \, s^{-1}}$ (red dashed lines).

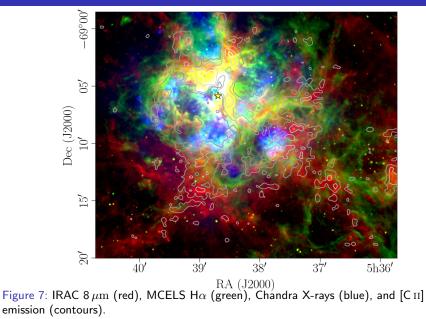
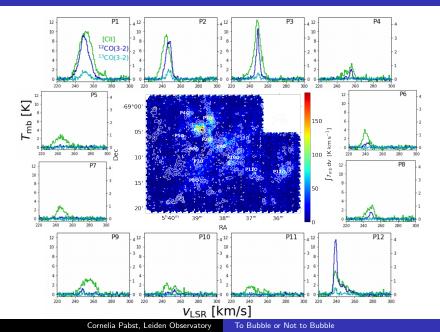

The starburst region 30 Doradus

Figure 6: Hubble's view of 30 Dor. Right: close-up of R136 in NGC 2070.



The starburst region 30 Doradus

Cornelia Pabst, Leiden Observatory To Bubble or Not to Bubble

The starburst region 30 Doradus

- several distinct bubbles/stellar clusters
- X-ray bubbles are outlined by PDR gas
- CO(3-2) emission is more clumpy than [C II] emission
- usually multiple components per line/pixel

Magnetic fields in 30 Dor

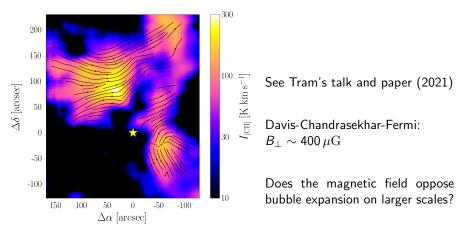
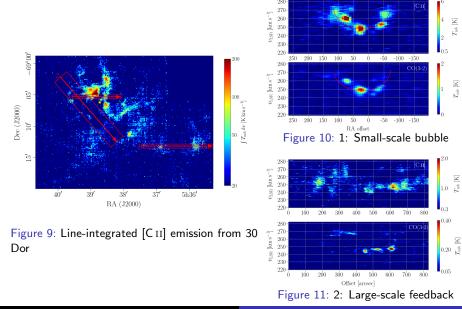
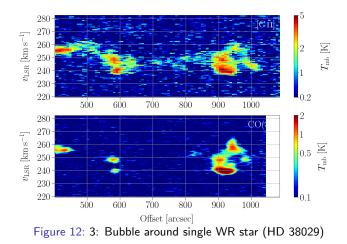




Figure 8: [C II] integrated intensity (upGREAT) with magnetic field lines (HAWC+).

Stellar feedback on different scales

Stellar feedback on different scales

Input stellar energy is largely dissipated in smaller structures (see Chu&Kennicutt 1994).

Cornelia Pabst, Leiden Observatory To Bubble or Not to Bubble

Stellar feedback on different scales

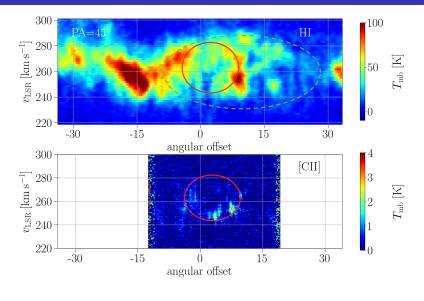
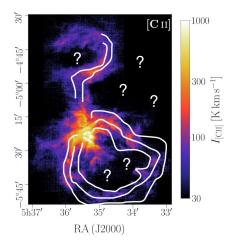


Figure 13: Large HI bubble (Kim+2005)

Cornelia Pabst, Leiden Observatory To Bubble or Not to Bubble

	Orion	30 Dor
age [Myr]	0.2	1-2
wind luminosity [erg s-1]	8x10 ³⁵	2x10 ³⁹
thermal energy of hot plasma [erg]	10 ⁴⁷	10 ⁵²
neutral atomic gas mass $[M_{\odot}]$	1500	~10 ⁶
kinetic energy of neutral atomic gas [erg]	2x10 ⁴⁸	~10 ⁵¹
mechanical energy input over lifetime of star(s) [erg]	5x10 ⁴⁸	∼10 ⁵³
E _{kin} /(L _w t)	0.5	~10 ⁻²

Where has all the energy gone?


• kinetic and turbulent energy in ionized gas: $\sim 10^{52} \, {\rm erg}$ • kinetic energy in large HI shell: $\sim 3 \times 10^{51} \, {\rm erg}$

Magnetic Orion

Figure 14: Magnetic field lines in OMC1 (APOD, Chuss+2019).

Figure 15: Magnetic field lines in the Veil?

Conclusions

- [C II] map of Orion is an incredibly rich data set, many as yet unexplored features
- [C II] observations of the Orion Nebula reveal a young expanding spherical bubble
- [C II] observations of 30 Dor show fragmented feedback
- while we do see X-ray bubbles, [C II] emission in shells is very faint: why?
- at upGREAT's angular (and spectral) resolution 30 Dor looks highly turbulent
- each pixel is one Orion
- energy dissipates at smaller (ionized gas) and larger scales (HI halo)
- does R136 heat most of the plasma or do single massive stars heat the plasma locally?