

Investigating magnetic field properties across **NGC 2024 in Orion B**

22/04/2024 814. WE-Heraeus Seminar: Heritage of SOFIA – Scientific Highlights and Future Perspectives

Ivana Bešlić LERMA, Observatoire de Paris

+ S. Coude. <u>D. C. Lis</u>, <u>M. Gerin</u>, <u>P. F. Goldsmith</u>, J. Pety, A. Roueff, K. Demyk, C. D. Dowell, L. Einig, <u>J. R.</u> <u>Goicoechea</u>, F. Levrier, J. Orkisz, N. Peretto, M. G. Santa-Maria, N. Ysard, A. Zakardjian

X-ray: NASA/CXC/PSU/K.Getman, E.Feigelson, M.Kuhn & the MYStIX team; Infrared:NASA/JPL-Caltech

OVERVIEW

POS B FIELD

RESULTS

SUMMARY

INTRODUCTION

ISM IS MAGNETIZED

A CONSTANT BATTLE BETWEEN PROCESSES OF TURBULENCE, THE IMPACT OF THE MAGNETIC FIELD, **STELLAR FEEDBACK** AND **SELF-GRAVITY**

(self-) gravity

turbulence

radiation

large-scale

PHANGS

Magnetic (B-) field is everywhere!

1) El Gordo cluster; Hu et al., 2024, Nature communications

2) M83. SALSA NASA, SOFIA, HAWC+, Alejandro S. Borlaff; JPL-Caltech, ESA, Hubble), Borlaff et al., 2023, Lopez-Rodriguez et al., 2022

3) Planck Colaboration

4) 30 Doradus; Tram et al., 2023

megaparsecs

2)

3)

4

kiloparsecs

parsecs

This talk! sub-pc

PHANGS

NGC 2024

A massive star-forming region in Orion B.

Distance of 410 pc.

04

Filamentary structure Hll region.

Background Star formation

Stellar feedback

Dense gas FIR sources

ESO/J. Emerson/VISTA, Cambridge Astronomical Survey Unit

NGC 2024

A massive star-forming region in Orion B.

Distance of 410 pc.

Filamentary structure Hll region.

Foreground

Filament

Effects of stellar compressible feedback motions super-critical

Dense gas **FIR** sources

Star formation

Background

Stellar

feedback

NGC 2024

A massive star-forming region in Orion B.

Distance of 410 pc.

Filamentary structure Hll region.

GOALS

Morphology and strength of the B field in NGC 2024.

Foreground

Filament

Effects of stellar compressible feedback motions super-critical

Dense gas **FIR** sources

Star formation

Background

Stellar

feedback

POS B-FIELD AND HOW TO MEASURE IT

DUST EMISSION -(<u>m</u>)-**IS POLARIZED**

RADIATIVE ALIGNMENT TORQUES

Polarization is perpendicular to the POS magnetic field.

see Pattle et al., 2023

Magnetic field

- Sketch adapted from Andersson et al., 2015 **Dust grain** B
 - Angular momentum
 - **F** Alignment torque H - Spin-up torque
- Hoang & Lazarian et al., 2014; Andersson et al., 2015

POS B-FIELD AND HOW TO MEASURE IT

Small-scale turbulence impacts direction of the B-field.

$$B_{\rm pos} \approx 9.3 \cdot \sqrt{n_{\rm H_2}} \cdot \frac{\Delta \upsilon}{\widehat{\sigma}_{\rm c}(\varphi)} \, [\mu {\rm G}]$$

Davis & Greenstein et al., 1951; Chandrasekhar & Fermi et al., 1953 Compressible nature of the ISM. Magneto-hydrodynamic waves. Entropy modes.

$$B_{\rm pos} \approx$$

Skalidis et al., 2021 Skalidis&Tassis et al., 2021

- 1. Gas number density (cm
- 2. Turbulent FWHM (km/s)
- 3. Spatial dispersion of dir of B-field (deg)

$$1.8 \cdot \sqrt{n_{\rm H_2}} \cdot \frac{\Delta \upsilon}{\sqrt{\widehat{\sigma}_{\rm c}}(\varphi)} \, [\mu \rm G]$$

OBSERVATIONS

FAR INFRARED

PI: D. Lis Dust polarization **Stokes parameters** 154 and 216 microns

MILLIMETER IRAM 30m **EMIR**

ORION B Large Program PI: J. Pety, M. Gerin Molecular emission CN and HCO+

Team's webpage

OBSERVATIONS

FAR INFRARED

PI: D. Lis Dust polarization **Stokes parameters** 154 and 216 microns

MILLIMETER IRAM 30m **EMIR**

ORION B Large Program PI: J. Pety, M. Gerin Molecular emission CN and HCO+

Team's webpage!

SOFIA 154 AND 214 μm

Stokes / (mJy/beam)

1000

100

0.5 pc

SOFIA 154 µm

B-field is highly ordered

B-field follows the morphology of the gas

Bands D and E show similar properties in some regions of NGC 2024

SOFIA 154 µm

Remove the largescale contribution of B-field

المرققة (Constraints) (Constr

2) Histogram analysis

Consistent results rms of ~ 5 deg

Molecular gas in NGC 2024

Tracers of UV-illuminated gas (Gratier et al., 2018, Bron et al., 2018) Cyanide, CN **Formyl cation, HCO+**

Multiple velocity components Opacity effects CN has a hyperfine structure

Modeling

Line widths are generally consistent

Gas number densities consistent between CN and HCO+ at the edges of HII

The broadest lines found on the east of NGC 2024 Filament has the highest

density

n = 5000 cm - 3

 $\Delta V = 1.24 \text{ km/s}$

-30

-20

-40

1.0

 $\begin{bmatrix} \mathrm{M}_{\mathrm{mb}} & \mathrm{K} \end{bmatrix}$

0.0

-50

POS B-field strength

Varies across NGC 2024 20-90 micro Gauss

Decreases from east to west

Possible change of direction of B-field?

CHII & Filament ~90 micro Gauss

the strongest magnetic field

East

~90 micro Gauss

20-40 micro Gauss the weakest magnetic field

Floment

30-50 micro Gauss

IS THE GAS STABLE?

Mass-to-flux ratio, Alfven Mach number, plasma-beta

Gas is highly turbulent in **NGC 2024**

Transition to supercriticality **Young Hll region Selection of lines**

Better supported by the magnetic field than in the filament

Possible place of star formation

SUMMARY

SOFIA FIR dust polarization to measure magnetic field in NGC 2024

B-field shows an ordered structure in NGC 2024

20-90 micro Gauss

B-field has an important role in regulating star formation

Bešlić+2024

ivana.beslic@obspm.fr astro.beslijica@gmail.com

FUTURE WORK

Multiwavelength dust polarization analysis

Grain alignment and polarization fraction in NGC 2024

Investigation of the outflow in NGC 2024

Sliding window

Sliding window

20

POS B-field strength

B-field strength derived from ST is generally lower than the DCF. Angle dispersion measurements consistent between sliding window and histogram analysis.

All + Filement ~90 miero Gauss

the strongest magnetic field

Ecst

~90 micro Gauss

20-40 micro Gauss the weakest magnetic field

Filement

30-50 micro Gauss

Molecular gas in NGC 2024

-20

 $v \, [\rm km/s]$

-30

-50

- West <u>່ວຼ</u>ິວ Line width inferred from modeling their excitation **East** Input: Tkin, Column mb [K] density **Collision partners: e-,** Filament ortho and para H2, e-T_{mb} [K] density **Output: opacity, number** ³ **- -----**+ Fil density, line width, peak
 - temperature

Orion Constellation

Betelgeuse

Orion nebula

Rigel

The region studied in this work

Orion's belt

Credit: Zdeněk Bardon/ESO

Facts

5 square degrees ~1000 hours 0.05 pc, 10^4 AU 30 molecular lines

The region studied in this work

Data

~820 000 pixels ~240 000 spectral channels Astronomers and data scientists

Team's webpage!

CO composite Image credit: J. Pety, Pety et al., 2017