THE CHEMICAL AND PHYSICAL STRUCTURE OF PRE-STELLAR CORES

Silvia Spezzano Max-Planck-Institute for Extraterrestrial Physics

MAX-PLANCK-INSTITUT FÜR EXTRATERRESTRISCHE PHYSIK 814. WE-Heraeus Seminar, Stuttgart 25/4/2024

What information can we infer from the observation of molecules?

• Temperature • Density

Kinematics

Chemical inventory Isotopic fractionation

Laboratory

The prototypical pre-stellar core L1544

 $N(H_2)$

H₂ column density map computed from *Herschel*/SPIRE data at 250, 350 and 500 micron

Herschel Space **Observatory**

[Spezzano et al. 2016]

The prototypical pre-stellar core L1544

 $N(H_2)$

H₂ column density map computed from *Herschel*/SPIRE data at 250, 350 and 500 micron

Herschel Space **Observatory**

[Spezzano et al. 2016]

The chemical structure of pre-stellar cores

Taurus Molecular Cloud

L1544

50000 au

HNCO peak CH₃OH peak dust peak

 $c-C_3H_2$ peak

10000 au

Image credit: Olivia Harper Wilkins

The chemical structure of pre-stellar cores

HNCO peak CH₃OH peak dust peak

c-C₃H₂ peak

10000 au

Image credit: Olivia Harper Wilkins

IRAM 30m telescope

Nitrogen fractionation and non-uniform illumination

Pre-stellar core

Spezzano et al. in 2022

IRAM 30m telescope

Nitrogen fractionation and non-uniform illumination

Pre-stellar core

Spezzano et al. in 2022

ALMA

Protoplanetary disk

Hily-Blant et al. 2019

CH₃OH peak

dust peak

c-C₃H₂ peak

The physical structure of pre-stellar cores

CH₃OH-*E* HNCO peak $c-C_3H_2$

 $HNCO^{b}$

Molecule

Transitions	Frequency	E_{up}	Critical density ^{<i>a</i>} $(\times 10^4 \text{ cm}^{-3})$			
	(GHz)	(K)				
$2_{-1,2}$ - $1_{-1,1}$	96.7394	12.5	1.3			
$2_{0,2}$ - $1_{0,1}$	96.7445	20.1	15.4			
$2_{1,2}$ - $1_{1,1}$	96.7555	28.0	31.5			
$3_{0,3}$ - $2_{0,2}$	145.0938	27.1	26.2			
$3_{-1,3}$ - $2_{-1,2}$	145.0974	19.5	4.4			
$3_{1,3}-2_{1,2}$	145.1319	35.0	46.1			
$4_{0,4}$ - $4_{-1,4}$	157.2461	36.3	44.2			
$1_{0,1} - 1_{-1,1}$	157.2708	15.4	9.3			
$3_{0,3}$ - $3_{-1,3}$	157.2723	27.1	26.2			
$2_{0,2}$ - $2_{-1,2}$	157.2760	20.1	15.3			
$3_{1,2}$ - $2_{2,1}$	145.0896	16.1	10.4			
$3_{3,0}$ - $2_{2,1}$	216.2788	19.5	33.7			
$6_{1,6}$ - $5_{0,5}$	217.8221	38.6	70.8			
$4_{3,2}$ - $3_{2,1}$	227.1691	29.1	52.0			
$5_{0.5}$ - $4_{0.4}$	109.9058	15.8	5.1			
$6_{0.6}$ - $5_{0.5}$	131.8857	22.1	8.8			
$7_{0.7}$ - $6_{0.6}$	153.8651	29.5	13.9			
$8_{0,8}$ - $7_{0,7}$	175.8437	38.0	21.5			

What are the physical conditions at the different molecular peaks?

The physical structure of pre-stellar cores

Results from RADEX models

	CH ₃ OH			Molecule c-C ₃ H ₂			HNCO		
Position	$n(H_2)$ cm ⁻³	T _{kin} K	$N_{ m mol}$ cm ⁻²	$n(H_2)$ cm ⁻³	T _{kin} K	$N^a_{ m mol} m cm^{-2}$	$n(H_2)$ cm ⁻³	T _{kin} K	$N_{ m mol}$ cm ⁻²
Dust peak CH ₃ OH peak c-C ₃ H ₂ peak	$\begin{array}{c} 4.7 \times 10^5 (0.05) \\ 3.4 \times 10^5 (0.05) \\ 6.7 \times 10^5 (0.2) \end{array}$	7.4(0.2) 16.5(0.2) 8.4(0.7)	$1.3 \times 10^{13}(0.05)$ $1.6 \times 10^{13}(0.03)$ $0.9 \times 10^{13}(0.07)$	$5.9 \times 10^4 (0.3)$ $7.0 \times 10^3 (0.3)$	13.2(1.2) 15.2(0.7) ^b	$1.4 \times 10^{13}(0.2)$ $1.5 \times 10^{14}(0.3)$	6.9×10 ⁴ (0.4)	11.8(1.0) ^b	4.3×10 ¹²
HNCO peak	$6.3 \times 10^5 (0.1)$	15.0(1.5)	$1.2 \times 10^{13} (0.03)$				$4.4 \times 10^4 (1.1)$	11.6(3.0) ^b	8.2×10 ¹²

The emission of the three molecules traces different gas layers!

Lin, Spezzano et al. 2022

The physical structure of pre-stellar cores

Full RT models with LOC (Line transfer with OpenCL, Juvela 2020)

Abundance profiles from chemical models of Sipilä et al. (2015) and Vasyunin et al. (2017). $n(r), T(r), V_r(r)$ from Keto & Caselli (2010).

- c-C₃H₂ and HNCO lines can be well reproduced with a factor of 3-5 increment of the abundance profiles
- CH₃OH lines can only be well reproduced if we include a bump in the density profile

Lin, Spezzano et al. 2022

Shocks induced by asymmetric and dynamic accretion flows? More observations needed!

molecular peaks

Hunting for pre-stellar cores with APEX

- N₂D+/N₂H+ survey of the densest starless cores within 200 pc from Sun (PI: Caselli)
- Selection Herschel Gould Belt Survey Archive (HGBSA; André et al. 2010)
- From a total sample of 1746 starless cores we selected those with the average $n(H_2) > 3x10^5$ cm⁻³ within the central 20 arcsec (~*Herschel* beam at 250 µm).

IRAS16293E/Oph464

Khale et al. 2023

IRAS16293E/Oph464

v=0 in the inner 3000 au v=-0.5 km/s at r>3000 au Constant abundance Turbulent velocity = 0.2 km/s N_2D^+/N_2H^+ abundance ratio of ~65%

Oph464

CONCLUSIONS AND OUTLOOK

- Physics and chemistry in pre-stellar cores are deeply interconnected
- Molecules are very powerful astrophysical tools (use them wisely!)
- The environment where pre-stellar cores are embedded plays a key role in the chemical distribution across the core
- Variation of the ¹⁴N/¹⁵N ratio across a pre-stellar core have been observed for the first time
- A tomographic view of pre-stellar cores is possible with multiline observations (and shows density enhancements with respect to the Bonnor-Ebert sphere)

The future will bring: more (cores) and better (spatial and spectral resolution)

ACKNOWLEDGEMENTS

Paola Caselli Yuxin Lin Sigurd Jensen Olli Sipilä Katharina Giers Judit Ferrer Asensio

MAX PLANCK INSTITUTE FOR EXTRATERRESTRIAL PHYSICS